Image Clustering using Color, Texture and Shape Features

نویسندگان

  • Azzam Sleit
  • Abdel Latif Abu Dalhoum
  • Mohammad Qatawneh
  • Maryam Al-Sharief
  • Rawa'a Al-Jabaly
  • Ola Karajeh
چکیده

Content Based Image Retrieval (CBIR) is an approach for retrieving similar images from an image database based on automatically-derived image features. The quality of a retrieval system depends on the features used to describe image content. In this paper, we propose an image clustering system that takes a database of images as input and clusters them using kmeans clustering algorithm taking into consideration color, texture and shape features. Experimental results show that the combination of the three features brings about higher values of accuracy and precision.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Content-based Image Retrieval for Asset Management Based on Weighted Feature and K-means Clustering

Assets have different shapes, colors and textures. A shape feature is the main characteristic, which distinguishes each type of asset in addition to the other features, i.e. the color and the texture. The value of features in the image-based asset information retrieval is used as the key field by comparing the similarities between the images. These similarities can be determined based on the di...

متن کامل

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

Color, texture and shape descriptor fusion with Bayesian network classifier for automatic image annotation

Due to the large amounts of multimedia data prevalent on the Web, Some images presents textural motifs while others may be recognized with colors or shapes of their content. The use of descriptors based on one’s features extraction method, such as color or texture or shape, for automatic image annotation are not efficient in some situations or in absence of the chosen type. The proposed approac...

متن کامل

Robust Method for E-Maximization and Hierarchical Clustering of Image Classification

We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...

متن کامل

Content Based Image Retrieval based on Color, Texture and Shape features using Image and its complement

Color, texture and shape information have been the primitive image descriptors in content based image retrieval systems. This paper presents a novel framework for combining all the three i.e. color, texture and shape information, and achieve higher retrieval efficiency using image and its complement. The image and its complement are partitioned into non-overlapping tiles of equal size. The feat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • TIIS

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011